Сцепление: устройство, принцип работы

Двухдисковое сухое сцепление

Двухдисковое сцепление работает по аналогичному принципу фрикционного взаимодействия дисков. Его применяют на тяжелой технике и спортивных авто, где для устойчивой передачи увеличенного крутящего момента требуется значительно бóльшая площадь соприкасающихся поверхностей.

Работа двухдискового сцепления схематически выглядит следующим образом. В корзине сцепления на шлицах первичного вала коробки передач подвижно расположены уже два ведомых диска с двусторонними фрикционными поверхностями. Между ними находится промежуточный ведущий диск, который подвижно насажен на шпильки, выходящие из маховика. На эти же шпильки надеты отжимные цилиндрические пружины, служащие для отведения промежуточного ведущего диска от ведомых при выключении сцепления, и наоборот — для равномерного прижатия ко второму ведомому диску при включении. Всю «слоеную» конструкцию, как и прежде, под гнетом цилиндрических пружин (либо одной диафрагменной) к фрикционной поверхности маховика прижимает прижимной диск, также насаженный и перемещающийся по упомянутым шпилькам. Механизм выключения сцепления аналогичен однодисковому.

Конструкция и принцип работы главных цилиндров сцепления

Наиболее просто устроены ГЦС с вынесенным и установленном на корпусе бачком. Основу устройства составляет литой корпус цилиндрической формы, на котором выполнены проушины для монтажных болтов и другие детали. С одного торца корпус закрыт резьбовой пробкой или пробкой со штуцером для соединения с трубопроводом. Если корпус закрыт глухой пробкой, то штуцер располагается на боковой поверхности цилиндра.

В средней части цилиндра выполняется штуцер для соединения с бачком посредством шланга или посадочное место для установки бачка непосредственно на корпус. Под штуцером или в посадочном месте в корпусе цилиндра выполнено два отверстия: компенсационное (впускное) отверстие малого диаметра и перепускное отверстие увеличенного диаметра. Отверстия располагаются таким образом, чтобы при отпущенной педали сцепления компенсационное отверстие располагалось перед поршнем (со стороны контура привода), а перепускное — за поршнем.

В полости корпуса установлен поршень, с одной стороны которого располагается толкатель, связанный с педалью сцепления. Торец корпуса со стороны толкателя закрыт гофрированным защитным резиновым колпачком. При отжатой педали сцепления поршень отводится в крайнее положение расположенной внутри цилиндра возвратной пружиной. В двухпоршневых ГЦС используется два поршня, расположенных друг за другом, между поршнями находится уплотнительное кольцо (манжета). Применение двух поршней улучшает герметичность контура привода сцепления и повышает надежность работы всей системы.

Работают такие цилиндры следующим образом. Когда педаль сцепления отпущена, поршень под воздействием возвратной пружины находится в крайнем положении и в контуре привода сцепления поддерживается атмосферное давление (так как рабочая полость цилиндра связана с бачком через компенсационное отверстие). При нажатии на педаль сцепления поршень под воздействием усилия ноги движется и стремится сжать жидкость в контуре привода. При движении поршня компенсационное отверстие закрывается и давление в контуре привода повышается. Одновременно через перепускное отверстие жидкость поступает за обратную сторону поршня. За счет роста давления в контуре поршень рабочего цилиндра перемещается и двигает вилку выключения сцепления, которая толкает выжимной подшипник — сцепление выключается, можно переключать передачу.

В момент отпуска педали поршень в ГЦС возвращается в первоначальное положение, давление в контуре падает и сцепление включается. При возврате поршня скопившаяся за ним рабочая жидкость выдавливается через перепускное отверстие, что приводит к замедлению движения поршня — это обеспечивает плавное включение сцепления и возврат всей системы в первоначальное состояние.

Если в контуре происходит утечка рабочей жидкости (что неизбежно вследствие недостаточной плотности соединений, порчи уплотнений и т.д.), то нужное количество жидкости поступает из бачка через компенсационное отверстие. Также это отверстие обеспечивает постоянство объема рабочей жидкости в системе при изменении ее температуры.

Конструкция и работа цилиндра с интегрированным резервуаром для рабочей жидкости несколько отличается от описанной выше. Основу этого ГЦС составляет литой корпус, установленный вертикально или под наклоном. В верхней части корпуса выполнен резервуар для рабочей жидкости, под резервуаром расположен цилиндр с подпружиненным поршнем, а через резервуар проходит соединенный с педалью сцепления толкатель. На стенке резервуара может располагаться пробка для долива рабочей жидкости или штуцер для соединения с вынесенным бачком.

Поршень в верхней части имеет углубление, вдоль поршня высверлено отверстие малого диаметра. Толкатель установлен над отверстием, в отведенном состоянии между ними остается зазор, через который в цилиндр поступает рабочая жидкость.

Работает такой ГЦС несложно. При отпущенной педали сцепления в гидравлическом контуре наблюдается атмосферное давление, сцепление включено. В момент нажатия на педаль толкатель движется вниз, перекрывает отверстие в поршне, герметизируя систему, и толкает поршень вниз — давление в контуре повышается, и рабочий цилиндр приводит в действие вилку выключения сцепления. При отпуске педали описанные процессы выполняются в обратном порядке. Утечки рабочей жидкости и изменение ее объема вследствие нагрева компенсируются через отверстие в поршне.

Сухой и мокрый типы сцепления

Кроме того, сцепление может быть мокрым либо сухим. В сухом типе сцепления производится работа дисков в условиях сухого трения. Мокрое сцепление предусматривает эксплуатацию дисков в жидкости. Самым распространённым в современных транспортных средствах является сухое однодисковое сцепление.

Мокрый тип сцепления (работающее в масляной ванне) в наше время применяется, главным образом, на мотоциклах с поперечным расположением двигателя. Поскольку мотоциклетные силовые агрегаты имеют общий масляный картер и для мотора, и для коробки переключения передач. Детали сцепления в них являются совмещёнными с моторной передачей и системой запуска двигателя, и смазываются они общим моторным маслом. На автомобилях же сцепления в масляной ванне практически вышли из употребления.

Начало движения автомобиля на подъеме

Многие водители-новички испытывают серьезные трудности при старте автомобиля на подъеме. Но, зная принцип работы сцепления механической коробки и последовательность действий, они будут делать это намного увереннее. Данную последовательность действий можно использовать, когда в машине плохо работает ручной тормоз:

  • изначально выжимаются педали сцепления и тормоза при работающем на холостых оборотах двигателе;
  • педаль сцепления медленно и плавно отпускается до тех пор, пока не почувствуется зацеп диска сцепления и трансмиссии, в этот момент автомобиль начинает подрагивать;
  • снимается нога с педали тормоза, при этом автомобиль не покатится назад, поскольку сцепление действует, как тормоз;
  • нажимается педаль газа, и автомобиль начинает катиться вперед.


Почему частично отпущенное сцепление заменяется собой педаль тормоза? Данный эффект – результат уловленного силового баланса между силой гравитационного притяжения и статической силы трения колес. Их неподвижность обеспечивается балансом силы двигателя, который толкает автомобили вперед и той же силой трения покоя. Но такая работа со сцеплением при остановках повышает износ фрикционного материала диска сцепления.

Устройство фрикционного сухого сцепления

Сухое фрикционное сцепление состоит из следующих основных частей:

— Маховик; — Нажимной диск («корзина» сцепления); — Ведомый диск (диск сцепления); — Выжимной подшипник (подшипник выключения сцепления) и нажимная муфта; — Детали привода сцепления.

Маховик. Маховик закреплен непосредственно на коленчатом валу двигателя и именно через него производится передача крутящего момента на трансмиссию. Сегодня обычно используются двухмассовые маховики: одна его часть крепится на коленвале, а вторая играет роль ведущего диска сцепления — на ней закреплены фрикционные накладки, за счет которых обеспечивается вращение ведомого диска. Части маховика соединены через пружины, выполняющие функции демпферов, снижающих уровень вибраций.

Нажимной диск («корзина»). Этот узел состоит из корпуса (который по форме напоминает корзину, за что и получил свое название) и непосредственно нажимного диска, соединенного с корпусом через пружину (или пружины). Пружины постоянно прижимают нажимной диск к ведомому диску, за счет чего и производится передача крутящего момента от двигателя коробке передач. В «корзине» могут использоваться несколько пружин, расположенных по кругу, однако сейчас чаще применяется одна пружина (диафрагма), состоящая из ряда тангенциальных (расположенных по радиусу) пластин. С одной стороны пластины соединены с корпусом, а в центре — с выжимным подшипником. Корзина жестко закреплена на маховике, вращаясь с ним как единое целое.

Ведомый диск. Расположен между маховиком и нажимным диском, его ступица надета на первичный вал коробки передач. Диск имеет сборную конструкцию: его основу составляет металлический диск, на котором с двух сторон находятся фрикционные накладки. Также в диске предусмотрены демпфирующие пружины, которые смягчают удары и делают передачу крутящего момента более плавной.

Выжимной подшипник и нажимная муфта. Это подшипник особой конструкции, который упирается в центральную часть диафрагменной пружины и производит ее сжатие при выжимании сцепления. Выжимной подшипник здесь необходим по простой причине: корзина вращается вместе с маховиком, и если бы не было подшипника, нажимная муфта подвергалась бы сильному износу. Наличие подшипника решает эту проблему, так как муфта давит на его внешнюю часть, которая не вращается, а усилие на пружину передается через внутреннее кольцо.

Детали привода сцепления. Это компоненты включения и выключения сцепления. Сюда входят вилка выключения сцепления (с ее помощью движется нажимная муфта), тросы (механический привод), гидроцилиндры и трубки (гидропривод), педаль и т.д.

Типы

Сцепление различается:

по типу привода (модели с гидравлическим, механическим или электрическим способом управления);

  • по типу трения (механизм может работать в масляной ванне или без нее);
  • по количеству ведомых дисков;
  • по типу расположения пружин;
  • по режиму включения.

Самые распространённые сегодня – модели с одним или несколькими фрикционными, то есть работающими за счет силы трения (без дополнительной смазки), дисками. По числу ведомых элементов они могут быть однодисковыми, двухдисковыми или многодисковыми (три и более).

Материал, который используется для изготовления фрикционов напоминает тот, что применяется в тормозных колодках. Если раньше в обоих случаях в состав добавлялся асбест (на металлических дисках были асбестовые накладки), то сейчас используются именно безасбестовые варианты.

В Европе запрещено производство фрикционных дисков с добавлением асбеста. Во время работы механизма асбестовая накладка стирается, образуя пыль, опасную для здоровья.

На современные легковые авто чаще устанавливаются однодисковые сцепления. Они оптимальны для двигателей малой и средней мощности.

Сухое двухдисковое сцепление

Двухдисковые модели подходят для грузового транспорта и легковых машин с мощным мотором. За счёт особенностей конструкции они долговечнее однодисковых, но и стоят дороже, так что использовать их на маломощных авто просто нецелесообразно.

Многодисковые сцепления используются в строительной и тяжелой грузовой технике, мощных спортивных и тюнингованных авто, в том числе и в полноприводных.

Плавная работа сцепления обеспечивается проскальзыванием дисков при уменьшении сжимающего их усилия. Точная передача крутящего момента — плотностью соединения ведущей и ведомой поверхностей.

При больших нагрузках и длительной эксплуатации рабочие поверхности стираются, а сцепление начинает «буксовать». При неисправном сцеплении диски разъединяются не полностью, а нормальное переключение передач нарушается.

Как правильно пользоваться сцеплением на автомобиле

На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.

При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.

Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.

  • Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
  • Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.

Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.

  1. В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
  2. Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.

Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.

Принцип работы фрикционного сцепления

Работа сухого однодискового фрикционного сцепления очень проста и сводится к следующему. Сцепление постоянно включено — это обеспечивается диафрагменной пружиной (или рядом пружин), которая прижимает нажимной диск к ведомому диску и к маховику. В таком положении весь узел сцепления вращается как единое целое, и крутящий момент полностью передается на коробку передач.

При переключении передач сцепление выключается: при нажатии на педаль пружина сжимается (с помощью привода сцепления, нажимной вилки, муфты и выжимного подшипника), ее пластины, закрепленные в «корзине», действуют как рычаги, и отводят нажимной диск от ведомого диска. В этот момент передача крутящего момента от двигателя коробке прекращается и можно переключить передачу.

После включения нужной передачи педаль сцепления отпускается, пружина возвращается в исходное положение, прижимая нажимной диск к ведущему диску и к маховику — передача крутящего момента возобновляется.

Однако главное преимущество и все возможности сцепления проявляются в момент начала движения автомобиля. Сцепление устроено таким образом, что диски могут прижиматься друг к другу с различным усилием, а поэтому передача крутящего момента может производиться в такой степени, в которой это необходимо. Если слегка отпустить педаль сцепления, то диски будут прижаты друг к другу слабо и проскальзывать, соответственно, и крутящий момент будет передаваться на коробку и колесам не полностью — так становится возможным трогание с места и плавный разгон автомобиля.

Особенности керамического сцепления

Ресурс сцепления и эффективность его работы на пределе нагрузок зависит и от свойств материала, обеспечивающего зацепление дисков. Стандартный состав накладок дисков сцепления большинства автомобилей включает спрессованную смесь стеклянных и металлических волокон, смолы и каучука. Поскольку принцип работы сцепления базируется на силе трения, фрикционные накладки ведомого диска рассчитаны на работу при высоких температурах, доходящих до 300-400 градусов Цельсия.

В мощных спортивных автомобилях нагрузки на сцепление намного превышают обычные нормы. Для некоторых трансмиссий может применяться керамическое и металлокерамическое сцепление. В состав материала таких накладок входит керамика и кевлар. Металлокерамический фрикционный материал менее подвержен износу и выдерживает нагрев до 600 градусов без потери рабочих качеств.

Производители используют различные конструкции муфты сцепления, оптимальные для определенного автомобиля, исходя из его назначения и стоимости. Сухое однодисковое сцепление остается достаточно эффективной и недорогой в изготовлении конструкцией. Данная схема широко применяется на легковых автомобилях бюджетного и среднего классов, а также на внедорожниках и грузовиках.

Неисправности сцепления

Неполное включение сцепления (пробуксовка)

Поломка ведущего диска сцепления из-за нарушения температурного режима работы (перегрев). Пробуксовка — при отпущенной полностью педали сцепления диски проскальзывают один относительно другого. От длительной пробуксовки диски значительно нагреваются, стальной ведомый диск может покоробиться, а чугунный маховик и нажимные диски могут покрыться трещинами. Фрикционные накладки изнашиваются и обгорают, в кабине появляется специфический неприятный запах.

Водитель замечает пробуксовку вначале на высших передачах, несмотря на увеличение оборотов двигателя скорость автомобиля не увеличивается. Если не ремонтировать, процесс прогрессирует, в дальнейшем на первой передаче машина не может тронуться с места.

Основной причиной пробуксовки является малый свободный ход педали сцепления, обычно он составляет 15—25 мм от крайнего верхнего положения педали до положения, когда выжимной подшипник начинает нажимать на рычаги выключения или на диафрагменную пружину. Необходимо восстановить (подрегулировать) свободный ход педали сцепления.

Если причина в ведомом диске, то его нужно демонтировать и осмотреть на предмет деформаций и механических дефектов.

При сильном износе фрикционных накладок подрегулировать свободный ход не удаётся, необходима замена накладок или ведомого диска.

Другой причиной пробуксовки является замасливание накладок, а также ослабление нажимных пружин (возможно произошёл отпуск стали при перегреве сцепления).

Неполное выключение сцепления (сцепление «ведёт»)

Неполное выключение сцепления обнаруживается при включении передачи, когда автомобиль неподвижен, это сопровождается сильным «хрустом» шестерён и ведёт к износу коробки передач. Возможная причина — увеличенный свободный ход педали сцепления.

Также это возможно при деформации выжимных рычагов; или выжимной подшипник заедает, не передвигается вместе с нажимной муфтой. Возможно, ведомый диск сцепления не передвигается по шлицам (загустела или загрязнилась консистентная смазка).

Первичный вал коробки передач вставляется в шарикоподшипник, расположенный в углублении маховика; возможно «ведение» сцепления связано с неисправностью этого подшипника. В двухдисковом сцеплении данная проблема возникает при замасливании и последующем склеивании ведомых и нажимных дисков.

Рывки при включении сцепления

Если, несмотря на плавный отпуск педали сцепления автомобиль трогается «рывками» с места, следует сделать предположение о разрушении фрикционных накладок, короблении ведомого диска или о поломке демпферных пружин, или об износе фрикционных шайб.

Также возможно заедание ведомого диска при передвижении по шлицам первичного вала коробки передач, а также заедание нажимной муфты или разрушение выжимного подшипника.

Неисправности, связанные с системой гидропривода или механического привода

При попадании воздуха в гидравлический привод выключения сцепления возможно «проваливание» педали, и как следствие — неполное выключение сцепления. Необходимо удалить пузырьки воздуха с частью тормозной жидкости (прокачать сцепление), доливая свежую.

В механизмах с тросовым приводом сцепление вообще не выключается, возможен обрыв троса.

Педаль сцепления не возвращается в первоначальное положение, произошло отсоединение возвратной пружины.

Если при выключении сцепления слышен сильный шум, создаваемый выжимным подшипником — это говорит о его износе.

Если привод сцепления механический (рычажный или тросовый) — то по мере износа фрикционных накладок педаль сцепления будет постепенно подниматься, при гидравлическом приводе педаль не меняет своё положение, происходит снижение уровня тормозной жидкости в бачке.

Механизмы сцепления в «молодые годы» мирового машиностроения

Изобретение механизма сцепления приписывается Карлу Бенцу. Так это или не так, достоверно установить невозможно: производством и совершенствованием первых автомобилей в XIX веке одновременно занималось сразу несколько компаний, и все они шли по своему развитию, что называется, «ноздря в ноздрю». Старейшим видом сцепления, широко распространённого на большинстве автомобилей конца XIX – начала XX века, было сцепление конического типа. Его фрикционные поверхности имели коническую форму. Такое сцепление передавало бо́льший крутящий момент, при тех же габаритах, по сравнению с нынешним однодисковым, было предельно простым по своему устройству и в уходе за ним.

Комфортабельный «Мерседес Бенц НР-50» – автомобиль с конической фрикционной муфтой.

Однако тяжёлый конический диск такого типа сцепления обладал большой инерцией, и при переключении передач после выжима педали ещё продолжал вращаться на холостом ходу, из-за чего включение передачи было затруднённой операцией. Для торможения диска сцепления применили специальный агрегат – тормоз сцепления, однако его использование было лишь половиной решения проблемы, как и замена одного конуса двумя менее массивными. В итоге, уже в 1920-х годах от такой тяжёлой и громоздкой (к кому же требующей значительных мускульных усилий в использовании) конструкции, как коническое сцепление, полностью отказались. Также существовало сцепление с обратным конусом, работавшее на разжимание.

Однако сам принцип данного механизма нашёл новое воплощение в конструкции современных коробок переключения передач с синхронизаторами. Синхронизаторы коробки передач, по сути, и представляют собою маленькие конические сцепления, которые работают за счёт трения бронзы (или другого металла с высоким коэффициентом трения) по стали.

Принцип работы

Принцип работы сцепления основан на жестком соединении ведомого диска сцепления и маховика двигателя за счет возникающей силы трения от усилия, которое создает диафрагменная пружина. Сцепление имеет два режима: «включено» и «выключено». Основное время работы ведомый диск прижат к маховику. Крутящий момент от маховика передаётся ведомому диску, а от него через шлицевое соединение на первичный вал коробки передач.

Для выключения муфты водитель нажимает на педаль, которая соединена с вилкой механическим или гидравлическим приводом. Вилка перемещает выжимной подшипник, который, нажимая на концы лепестков диафрагменной пружины, прекращает её давление на нажимной диск, а он, в свою очередь, освобождает ведомый. В этот момент двигатель разъединен с трансмиссией.

После включения нужной передачи в коробке передач водитель отпускает педаль сцепления, вилка перестаёт воздействовать на выжимной подшипник, а тот на пружину. Нажимной диск прижимает ведомый к маховику. Двигатель соединен с трансмиссией.

Двойное сцепление в автомобилях с АКП

В автомобилях с автоматической коробкой передач педали сцепления нет, однако само сцепление присутствует, но управляет им автоматика. При этом в разных типах «автоматов» работают различные типы сцепления. Например, в роботизированных АКП применяется двойное сцепление, которое имеет ряд принципиальных отличий от сцепления, описанного выше.

Двойное сцепление содержит два комплекта пластин, образующих фрикционные муфты, одна из которых отвечает за передачу крутящего момента к первичному валу нечетного ряда передач, вторая — к первичному валу четного ряда передач.

Двойное сцепление работает в масляной ванне (поэтому оно относится к «мокром» типу), в нем используется пакеты из нескольких фрикционных дисков (то есть, это многодисковое сцепление). В нормальном положении пластины разомкнуты и удерживаются с помощью пружин. Сжатие дисков (как переключение передач в АКП) осуществляется с помощью масла, подающегося под давлением в гидроцилиндры муфт.

Как работает сцепление, каковы его типичные неисправности, и как их избежать

Важным элементом механической трансмиссии является сцепление, которое служит для кратковременного отсоединения двигателя от трансмиссии. Кроме того, сцепление является своеобразным демпфером, защищающим двигатель от перегрузок. Как оно работает, и как продлить его жизнь?

Как работает сцепление?

В большинстве легковых автомобилей с механической коробкой передач используется сухое однодисковое сцепление. Его конструкция довольно проста: это два взаимно прилегающих диска – ведущий (корзина) и ведомый, выжимной подшипник и система привода. В однодисковом варианте первичный вал коробки передач входит в шлицевую муфту в центре ведомого диска, а поверхности маховика двигателя, накладок ведомого диска и нажимного диска корзины плотно прилегают друг к другу. За счет этого и обеспечивается передача потока мощности от двигателя к коробке передач, причем исправное сцепление спокойно «переваривает» всю мощность, развиваемую двигателем.

В обиходе ведущий диск сцепления, включающий в себя нажимной диск (с гладкой блестящей поверхностью), диафрагменную пружину (лепестки в центре) и кожух, называют корзиной

При нажатии на педаль сцепления выжимной подшипник воздействует на пластинчатые пружины корзины, из-за чего поверхности ведомого и ведущего дисков рассоединяются. Соответственно, происходит отключение первичного вала от маховика – то есть, физическое рассоединение двигателя и коробки передач, что позволяет переключить передачу или включить «нейтралку». При включении сцепления (отпускании педали) выжимной подшипник перестает давить на пластинчые пружины, и диски снова смыкаются, а демпферные пружины в центральной части ведомого диска гасят крутильные колебания, возникающие в движении.

Хорошо видны четыре демпферные пружины ведомого диска сцепления, а также изношенные фрикционные накладки

При нормальной работе сцепления оно не привлекает к себе внимания. Но при его неисправности водитель, к примеру, не сможет включить передачу или тронуться с места. Какие же возможны проблемы?

Какие неисправности могут возникнуть при работе сцепления?

Итак, с какими же проблемами в работе сцепления можно столкнуться на практике? Во-первых, это неполное выключение сцепления — как говорят опытные водители, оно «ведёт». При нажатии педали поверхности маховика и ведомого и ведущего дисков в таком случае не размыкаются полностью, и попытки переключить передачу сопровождаются хрустом и скрежетом кареток сихронизаторов, ведь полного разъединения коробки передач и мотора не происходит.

Обратная неприятность – пробуксовка сцепления: то есть, его неполное включение. При этом поверхности маховика, ведомого диска и ведущего диска, наоборот, неплотно прилегают друг к другу и проскальзывают, из-за чего может возникнуть характерный запах горелых фрикционных накладок ведомого диска, а попытка резко набрать скорость приводит лишь к увеличению оборотов коленчатого вала. От двигателя на колёса при этом передается лишь небольшая часть мощности – до тех пор, пока износ поверхностей не становится критическим.

Если сцепление «буксует», вместо автомобиля «разгоняется» только стрелка тахометра

Наконец, возможны и такие неисправности, как возникновение вибраций и посторонних призвуков при включении-выключении сцепления.

Из-за чего возникают неисправности сцепления?

Обычно каждая возникшая проблема со сцеплением имеет свою предысторию. К примеру, сцепление может начать буксовать из-за сильного износа на больших пробегах автомобиля, когда фрикционные накладки ведомого диска износились, а рабочие поверхности корзины и маховика имеют выработку.

Во-вторых, сцепление можно просто «сжечь» — например, по неопытности или после длительных перегрузок. Такое, к примеру, бывает у любителей длительных выездов «враскачку» на бездорожье или в глубоком снегу, а также у поклонников резких стартов с педалью газа в пол.

Ресурс сцепления

Ресурс сцепления главным образом зависит от условий эксплуатации автомобиля, а также от стиля езды водителя. В среднем, срок службы сцепления может доходить до 100-150 тысяч километров пробега. В результате естественного износа, возникающего в момент соприкосновения дисков, фрикционные поверхности изнашиваются и требуют замены. Основная причина – проскальзывание дисков.

Двухдисковое сцепление обладает большим ресурсом за счет увеличенного числа рабочих поверхностей. Выжимной подшипник сцепления задействуется при каждом разрыве соединения двигателя и коробки передач. Со временем в подшипнике вырабатывается и теряет свойства вся смазка, в следствие чего он перегревается и выходит из строя.

Устройство и принцип работы сцепления

Сцепление автомобиля состоит из четырех основных элементов:

  • Маховик двигателя;
  • Ведомый диск сцепления;
  • Корзина сцепления;
  • Выжимной подшипник.

Положение основных элементов сцепления относительно друг друга имеют два состояния – сцепление включено (педаль сцепления отжата, крутящий момент двигателя передается на КПП), сцепление выключено (педаль сцепления нажата, крутящий момент не передается от двигателя к КПП).

На изображении показаны два состояния. Давайте подробней разберемся, что именно происходит в эти моменты.

Изображение А – педаль сцепления не нажата, двигатель передает крутящий момент к КПП.

В этот момент диафрагменная пружина (5) прижимает нажимной диск (4) к ведомому диску сцепления (3), который в сою очередь плотно прижимается к маховику двигателя (2). Маховик двигателя за счет сил трения передает крутящий момент на ведомый диск сцепления, который в свою очередь за счет тех же сил трения вращает нажимной диск.

Нажимной диск соединен с первичным валом КПП и передает крутящий момент на него. Первичный вал в свою очередь через систему шестерен передает крутящий момент на колеса вашего автомобиля, и автомобиль приводится в движение.

Изображение В – педаль сцепления нажата, двигатель НЕ передает крутящий момент к КПП.

Выключение сцепления начинается с приведения в движение выжимного подшипника (7), который давит на диафрагменную пружину (5). Под действием этой силы диафрагменная пружина изгибается и отводит нажимной диск (4) от ведомого диска (5), который в свою очередь отходит от маховика двигателя (2). Таким образом, в этот момент эти детали не касаются друг друга, между ними не возникает сил трения, и крутящий момент не передается на первичный вал КПП.

Первичный вал КПП в свою очередь останавливает вращение и делает возможным переключение передач автомобиля.

Вот так все просто.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий