Устройство ДВС
Конструктивно двигатели делят, с учетом устройства и компоновки техники, на которой они установлены. Но сохраняются неизменными принципы, одинаковые для конструкции любого ДВС.
Двигатель комплектуется такими конструктивными узлами:
- блоком цилиндров – основной частью корпуса с проемами для рабочих камер, рубашкой охлаждения (для моторов, охлаждаемых жидкостью), крепежными отверстиями для установки головок и картера, посадочными местами для коленчатого вала и прочими конструктивными элементами;
- кривошипно-шатунной группой – с коленчатым валом, к которому крепятся шатуны, приводящие в действие поршни, двигающиеся внутри цилиндров; инерция вращения поддерживается маховиком;
- газораспределительным механизмом – системой, подающей в камеры сгорания топливо-воздушную смесь, с отводом выхлопа; включает распределительный вал, клапана, приводимые в действие коромыслами, ремнем или цепью, соединенными с коленвалом;
- топливной системой – подает горючее в камеры сгорания, после обогащения воздухом; включает бак, систему трубок для подвода питающей жидкости, карбюратора или инжектора (с учетом особенностей конструктивного устройства), форсунок, насоса, фильтрующего элемента;
- смазочной системой – с подачей смазки к трущимся деталям; включает масляный насос, приводящийся коленчатым валом, систему патрубков и полостей, фильтр и поддон; предусмотрено устройство «сухого» или «мокрого» картера;
- системой зажигания – для поджигания топливно-воздушной смеси; используется только на бензиновых двигателях, поскольку на дизельных моторах топливо с воздухом воспламеняется самостоятельно, при определенном давлении;
- системой охлаждения – может быть воздушной или жидкостной, для снижения температуры корпуса мотора, чтобы предупредить износ и выход из строя элементов;
- электросистемой – источником электроэнергии, необходимой для работы мотора; включает аккумуляторную батарею, генераторный блок, стартер и проводку с датчиками;
- системой выхлопа – для удаления продуктов сгорания в атмосферу, с доочисткой этой смеси, снижением шума от работы двигателя, фильтрующим элементом.
Конструкция узлов совершенствуется, по мере появления новых материалов и конструктивных решений.
С учетом особенностей конструктивного устройства различных элементов двигателей, важно учитывать такие моменты:
- цилиндры могут выполняться отдельно, с запрессовкой в корпус блока, или совместно с корпусом; моноблочные системы не предусматривают восстановления, в связи с тем, что нельзя заменить гильзу;
- корпуса двигателей изготавливают из сплавов чугуна или алюминия, устойчивых к перепадам температуры и высокому давлению;
- головка блока цилиндров выполняется с ним совместно или в виде отдельной детали; при раздельном исполнении возможно использование разных материалов для головки и блока цилиндров;
- работа кривошипно-шатунного механизма может уравновешиваться балансирными валами, расположенными по сторонам от коленвала и нивелирующими влияние инерционных сил; в результате снижается вибрация и шум, исключаются перегрузки двигателя;
- негативное влияние пружин при быстрой работе двигателя с механическим газораспределительным механизмом снижается за счет десмодромной системы управления мотором – со сложной конфигурацией кулачков;
- зависание клапанов исключается легкими материалами для изготовления этих деталей и пружинных элементов, пневматическим приводом;
- альтернатива традиционной конструкции ГРМ – гильзовый способ, разработанный Найтом; предусматривает использование взамен клапанов скользящих гильз, работающих бесшумно и долговечно; этот способ перестали использовать по причинам большого расхода смазочной жидкости, с разработкой верхнеклапанной конструкции;
- ранние модели двигателей комплектовались не стартерами, а генераторами переменного тока (магнето), приводимыми в действие коленчатым валом; это требовало прокручивания вала двигателя для запуска;
- вредное воздействие на экологию выхлопных газов частично снижается каталитическим нейтрализатором, окисляющим и химически преобразовывающим выхлоп;
- электронные системы дополнительно улучшают работу двигателя; изменение фаз газораспределения изменяет нагрузку на мотор, с учетом включенной передачи, снижая потребление горючего; дезактивация цилиндров регулирует объем камер сжатия, отключая ненужные цилиндры; регулировка степени сжатия изменяет объем камер сгорания, с учетом режимов работы мотора.
Эти и другие особенности конструктивно улучшили работу двигателей внутреннего сгорания.
Развитие технологии
Попыток создать силовой агрегат, который смог бы заменить установку, работающую за счет пара, в те времена предпринималось много. До сих пор учёные спорят о том, кто изобрёл двигатель внутреннего сгорания. Вариантов несколько, поскольку базовая точка зрения вынашивалась в головах учёных того времени.
В седьмом году девятнадцатого века механик из Франции Франсуа Исаак де Риваз сконструировал первый двигатель с применением поршней. Установка приводилась в действие за счет сжигания водорода, элементы поршневой группы и поджигание топлива свечой использовались при дальнейшей работе над мотором.
Франсуа Исаак де Риваз (1752 – 1828 года жизни):
Считается, что первый двигатель внутреннего сгорания изобрёл в шестидесятом году девятнадцатого века изобретатель французского происхождения Этьен Ленуар. Этот двухтактный газовый агрегат вырабатывал одиннадцать лошадей. Камера объёмного вытеснения в единственном экземпляре размещалась горизонтально, работала благодаря окислению кислорода и светильного газа, заряд поджигался за счёт электрического разряда. Главная особенность заключалась в применении механизма кривошипов и шатунов. Коэффициент полезного действия составлял 4,65%.
Этьен Ленуар (1822 – 1900 года) и его газовый двигатель, 1860 год:
Позже, в 1863 году изобретатель немецкого происхождения Николай Аугуст Отто, изучив двигатель Ленуара, разрабатывает и создаёт атмосферный агрегат на два такта с внутренним сгоранием жидкого горючего. Цилиндр агрегата располагался вертикально, зажигание происходило открытым способом, а полезное действие составляло 15%. В семьдесят шестом году девятнадцатого века Отто построил четырёхтактный двигатель на газу.
Николай Аугуст Отто (1832 – 1891 года) и его четырёхтактный двигатель, 1876 год:
Двигатель, работающий на горючей смеси лёгких углеводородов нефти со смесеобразованием при помощи карбюратора создан в 1885 году. Авторы, конструкторы немецкого происхождения, Готлиб Даймлер и Вильгельм Майбах. Двигатель установлен в том же году на первом двухколёсном транспортном средстве, а годом позже, на первом агрегате с четырьмя колёсами.
Рудольф Дизель (1858 – 1913 года жизни):
Событием в автомобилестроении стала работа конструктора из Германии Рудольфа Дизеля. Поставив цель увеличить коэффициент полезного действия разработанных на тот момент двигателей, в девяносто седьмом году девятнадцатого века создатель придумал использовать сжатие для воспламенения рабочей смеси. Агрегаты, использующие аналогичный способ воспламенения ездят по улицам городов и сегодня.
Принцип работы двигателя
Вне зависимости от конструктивного исполнения двигателя внутреннего сгорания, сохраняется общий принцип работы, основанный на том, что поршни, под воздействием энергии расширяющегося в камерах цилиндров газа двигаются прямолинейно, с получением на выходе вращения коленчатого вала. От него вращательное движение через трансмиссию передается на ходовые колеса или другие исполнительные механизмы.
Детальнее о том, как работает двигатель внутреннего сгорания, показано на примере двух- и четырехтактных установок.
Принцип работы двухтактного двигателя
Двухтактный двигатель работает в такой последовательности:
- поршень начинает двигаться снизу вверх, в начале цикла пребывая в нижней мертвой точке – после сжатия воздушно-топливной смеси, она воспламеняется с поджиганием в максимально верхнем положении;
- при сгорании, поршень выталкивается вниз, с открытием выпускного клапана, за счет которого продукты сгорания высвобождают камеру.
Описанный цикл повторяется в таком же порядке, с одновременным впуском и сжатием. По мере передвижения поршня вверх, в подпоршневое пространство втягивается воздух, с его переходом по каналу в надпоршневую часть, после достижения верхней мертвой точки.
Двухтактные двигатели внутреннего сгорания получили ограниченное применение. Такие силовые установки размещают на небольших механизмах – скутерах и мопедах, легких моторных катерах и лодках, газонокосилках.
Принцип работы четырехтактного двигателя
Полный цикл работы четырехтактного двигателя состоит из таких отдельных этапов:
- впуска – с движением поршня вниз, с нижней мертвой точке; в начале опускания срабатывает впускной клапан, открывая доступ для топливо-воздушной смеси (или исключительно воздуха, при непосредственном впрыске); в камере сгорания создается необходимое давление (возможна дополнительная подача воздуха, при наличии турбонадува);
- сжатия – после достижения крайней нижней точки, поршень двигается вверх; перекрывается впуск воздуха, а камера сжимается до критической отметки давления, с распыленным топливом в объеме над поршнем;
- рабочего хода – при максимальном сокращении объема камеры сгорания, топливо воспламеняется самопроизвольно (для дизельного мотора) или от поданной искры свечи (для бензинового); расширившийся газ двигает поршень вниз, к нижней мертвой точке;
- выпуска – с открытием выпускного клапана и вытеснением поршнем сгоревших газов из камеры, при возвращении в верхнюю мертвую точку.
При общем количестве тактов – четыре, лишь один включает получение полезной работы, когда поршень двигается под воздействием расширяющихся газов в камере сгорания. Три остальных такта несут вспомогательную нагрузку, с новым впрыском топлива, созданием необходимого давления и выпуском отработанных газов.
Учитывая особенности работы, по завершении цикла коленчатый вал остановился бы, поскольку система достигает точки равновесия. Но вращение продолжает маховик, придающий инерцию коленчатому валу, с последующим повторением описанных тактов.
Такой двигатель установлен на большинстве современной техники – автомобилях, тракторах и самоходных машинах, железнодорожных локомотивах, компрессорных и насосных блоках, других агрегатах.
Сравнивая двух- и четырехтактные двигатели внутреннего сгорания, важно учесть, что первые отличает большая компактность. Но эффективность двухтактных моделей меньше, по сравнению с четырехтактными, поэтому их применение ограничено
Система
При работе двигателя постоянно происходит ряд цикличных процессов. Они должны быть стабильными и проходить за строго определенный промежуток времени. Это условие обеспечивает бесперебойную работу всех систем.
У дизельных двигателей топливо предварительно не подготавливается. Система подачи топлива доставляет его из бака, и оно подается под высоким давлением в цилиндры. Бензин же по пути предварительно смешивается с воздухом.
Принцип работы двигателя внутреннего сгорания таков, что система зажигания воспламеняет эту смесь, а кривошипно-шатунный механизм принимает, трансформирует и передает энергию газов на трансмиссию. Газораспределительная система выпускает из цилиндров продукты горения и выводит их за пределы транспортного средства. Попутно снижается звук выхлопа.
Система смазки обеспечивает возможность вращения подвижных узлов. Тем не менее трущиеся поверхности нагреваются. Система охлаждения следит за тем, чтобы температура не выходила за пределы допустимых значений. Хотя все процессы происходят в автоматическом режиме, за ними все же необходимо наблюдать. Это обеспечивает система управления. Она передает данные на пульт в кабину водителя.
Как протекает рабочий цикл четырехтактного карбюраторного двигателя?
Рассмотрим подробно каждый такт цикла.
Такт впуска
Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой.
Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр.
Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.
Такт сжатия
При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь.
В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется.
В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.
Такт расширения
Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.
Такт выпуска
Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.
Далее рабочий цикл повторяется.
Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.
Первый такт — впуск.
Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения.
Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь.
В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.
Работа четырехтактного одноцилиндрового карбюраторного двигателя
а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в — расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 — поршневой палец; 13 — поршневые кольца
Второй такт — сжатие.
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.
Третий такт — расширение.
В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление.
Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К.
В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура — 1100-1800 К.
Четвертый такт выпуск.
Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.
Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.
Рабочий цикл двигателя заканчивается четвертым тактом — выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.
Двухтактные дизели
Мало кто знает, что не так давно существовали и двухтактные дизели с сухим картером, которые успешно эксплуатировались в СССР до самых 90-х годов. Отличительной особенностью такого двухтактного двигателя являлось наличие газораспределительного механизма, который имел всего пару (или один) выпускных клапанов, а вот впуск осуществлялся классическим способом для двух тактов – через продувочные окна. К таким двигателям относятся ЯАЗ-204 и ЯАЗ-206 , танковые двигатели 5ТДФ (700 л.с) и 6ТДФ-2 (1200 л.с.) . Еще одно привлекательное отличие от бензинового собрата – продувка дизеля осуществлялась воздухом, а не рабочей смесью, как у бензинового варианта, поэтому экономичность дизельного двухтактника была сравнима с четырехтактным вариантом.
Мощность двухтактного двигателя при одинаковых размерах литровой ёмкости и частоте вращения вала примерно на 50-70% больше четырехтактного за счет большего числа рабочих циклов в единицу времени. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60…70% по сравнению с четырехтактным ДВС.
Дизельный мотор
Конструктивно дизельный двигатель автомобиля отличается от того, как и из чего состоит бензиновый агрегат. Прежде, мотор такого типа использует тяжёлое топливо. Однако, главное отличие в отсутствии механизма зажигания агрегата. Возгорание поступившего горючего в установке происходит за счет давления.
Сначала мотор сжимает в цилиндре воздух, разогревая до высокой температуры. После достижения поршнем крайней верхней точки, в камеру впрыскивается порция топлива. Высокая температура воспламеняет смесь.
Отрицательный момент агрегата, вес, чувствительность к качеству топлива, меньшие скорости вращения. Вес обусловлен нагрузкой на детали и элементы конструкции.
Положительный момент топливная экономичность, повышенный коэффициент полезного действия и величина крутящего момента на заниженных оборотах.
Дизельный двигатель MTU 12V 2000 S96:
Виды ГРМ
Существуют следующие виды газораспределительных механизмов: нижнеклапанный ГРМ и верхнеклапанный ГРМ. Сегодня, на современных автомобилях, используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров.
Клапан удерживается в закрытом состоянии с помощью клапанной пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость (оптимальную, чтобы не увеличивать ударную нагрузку на седло клапана) для гарантированного закрытия клапана во время работы.
Чтобы снизить потери на трение в ГРМ применяют ролики, которые установлены на рычагах и толкателях привода клапанов. Применение роликов в клапанном механизме заменяет трение скольжения, на трение качение, что значительно уменьшает потери на привод клапанов.
При открытии впускного клапана проходит топливно-воздушная смесь (или воздух) наполняя цилиндр двигателя. Чем больше площадь проходного сечения, тем полнее заполнится цилиндр, что приводит к повышению выходных показателей цилиндра при рабочем ходе. Для улучшения очистки цилиндров от продуктов сгорания увеличивают диаметр тарелки выпускного клапана. Правда, размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Многое также зависит от регулировки клапанов.
Применение четырех клапанов на цилиндр началось еще в 1912 г. на двигателе автомобиля PeugeotGranPrix. Широкое использование такой схемы в серийном производстве легковых автомобилях началось только в конце 1970-х гг. Сегодня ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей.
Mercedes выпускает двигатели, которые имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Турбонагнетание
Турбонагнетатель или турбокомпрессор (ТК, ТН) — это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет «закачивать» под давлением воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.
На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.
Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.
Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).
Виды двигателей внутреннего сгорания
Поршневой ДВС
Роторный ДВС
Газотурбинный ДВС
Поршневые двигатели — камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
Газовая турбина — преобразование энергии осуществляется ротором с клиновидными лопатками.
Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).
ДВС классифицируют:
- по назначению — на транспортные, стационарные и специальные.
- по роду применяемого топлива — лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
- по способу образования горючей смеси — внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
- по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.
Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).
Принцип работы
Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.
Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.
Принцип работы четырехтактного двигателя
Такты четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации
Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)
Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
- На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
- Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
- Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
- И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.
Работа четырехтактного двигателя
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Такты двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
- В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
- Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Работа двухтактного двигателя
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.